
Moab End-User Training

CLI Module

Agenda

 Job Submission

 Job Dependencies

 Job Monitoring

 Job Management

 Job Scripting

Job Submission

 A Moab Job: A request for compute resources
needed to perform computational work

 A Job Specifies:
What resources are needed

When the resources are needed

For how long are the resources needed

 The most common Moab command is msub

Job Submission

Common msub Options

 -l Resource List
nodes

nodes=X:ppn=X

procs

walltime

Job Submission

Common msub Options (Cont’d)

 -q Destination Queue (Class)

 -A Account

 -N NAME

 -o Output Path

 -e Error Path

 -h Job Hold

Job Submission

Common msub Options (Cont’d)

 -m Mail Options

 -M Mail List

 -E Environment Variables

 -V All Variables

 -v Variable List

msub -l

 Specifies resource requirements for your job

 Establishes limits to resources

 -l is followed by one or more option

 Options depended upon resource manager

$ msub –l nodes=32,walltime=3600 cmd.sh

The msub command

The –l resource switch

The list of options

The jop script to run

nodes

 Identifies the number and type of nodes

 The node and properties of the nodes are
separated by a colon (:)

 Request 12 nodes of any type:

 Request 4 processors on one node:

$ msub -l nodes=12 cmd.sh

$ msub –l nodes=1:ppn=4 cmd.sh

nodes=X:ppn=X

 Moab uses the concept of tasks to schedule
workload

 Today’s multiple-processor compute nodes can
often support more than one task
simultaneously

 Submit a job requesting 4 nodes with 2
processors per node:

Moab interprets this as “On whatever nodes the
job lands on, there needs to be 2 processors
there to handle the tasks”

$ msub –l nodes=4:ppn=2 cmd.sh

nodes=X:ppn=X

 Consider a cluster of 8 quad-core physical
computers:

$ echo sleep 300 | msub -l nodes=4:ppn=2,walltime=200

Moab.1

$

$ mdiag -n

compute node summary

Name State Procs Memory Opsys

node01 Idle 4:4 0:0 -

node02 Idle 4:4 0:0 -

node03 Idle 4:4 0:0 -

node04 Idle 4:4 0:0 -

node05 Idle 4:4 0:0 -

node06 Idle 4:4 0:0 -

node07 Busy 0:4 0:0 -

node08 Busy 0:4 0:0 -

nodes=X:ppn=X

 To force Moab to distribute the job across all 4
nodes, use nmatchpolicy=exactnode:

$ msub –l nodes=4:ppn=2,nmatchpolicy=exactnode cmd.sh

nodes=X:ppn=X

 Can be seen as this:

$ mdiag -n

compute node summary

Name State Procs Memory Opsys

node01 Idle 4:4 0:0 -

node02 Idle 4:4 0:0 -

node03 Idle 4:4 0:0 -

node04 Idle 4:4 0:0 -

node05 Busy 2:4 0:0 -

node06 Busy 2:4 0:0 -

node07 Busy 2:4 0:0 -

node08 Busy 2:4 0:0 -

nodes=X:ppn=X

 The bottom line: If you don’t care how many
nodes are used for your job, use nodes=8 and
let Moab distribute accordingly

procs

 The number of total processors to be allocated
to a job

 Can come from one or more nodes (Depending
on system configuration)

 Use only 1 procs declaration per msub job
submission

$ msub –l procs=8 cmd.sh

walltime

 The wall-clock time defines the maximum
amount of time your job will run on the cluster

 Moab will force the running code to terminate
at the end of the walltime setting

 The value for walltime is DD:HH:MM:SS

 Since Moab is a scheduler, time is crucial

$ msub –l procs=8,walltime=5:00 cmd.sh

$ echo sleep 200 | msub -l host=node00,walltime=300

walltime

 Using checkjob to see how much time is left on
a job’s walltime:

$ checkjob Moab.3

job Moab.3

State: Running

...

Required HostList:

[node00:1]

...

Reservation 'Moab.3' (-00:00:05 -> 00:04:55

Duration: 00:05:00)

walltime

 Assuming there is space available, you can
adjust walltime using the “Request Adjust
Walltime Duration” (reqawduration) switch to
mjobctl:

 Time is converted to seconds, regardless of how
it is input

 Adding walltime must be configured by Admin

 Can only adjust your own jobs

$ mjobctl -m reqawduration-=10:00 <JOBID>

-q Destination Queue/Class

 Queues allow the system administrator to
define resource allocation for jobs

 E.g., can limit the number and/or types of CPUs
users can submit jobs to

 Queues are defined in moab.cfg:

 When submitting jobs to this queue, only 2
processors will be made available:

CLASSCFG[lowprocs] MAX.PROC=2

$ msub -q lowprocs cmd.sh

-q Destination Queue/Class

 Submit a job requesting more than 2 procs

$ echo sleep 300 | msub -q lowprocs -l procs=4

$ showq

active jobs--------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

0 active jobs 0 of 100 processors in use by local jobs

(0.0%)

0 of 25 nodes active (0.00%)

eligible jobs------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs--------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.4 root BatchHold 4 99:23:59:59 Fri Jul 22

-A Account

 The -A switch allows jobs to be submitted to a
named account

 Accounts can be used to further define limits on
resources

 Accounts are defined in moab.cfg:

Limits the max number of jobs to 2 for projectX

ACCOUNTCFG[projectX] MAXJOB=2

$ msub -A projectX cmd.sh

-A Account

 Submit more than allowed:

 View the results:

$ echo sleep 300 | msub -A projectX

$ echo sleep 300 | msub -A projectX

$ echo sleep 300 | msub -A projectX

$ echo sleep 300 | msub -A projectX

$ showq

active jobs--------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.5 user1 Running 1 99:23:59:56 Fri Jul 22

Moab.6 user1 Running 1 99:23:59:57 Fri Jul 22

2 active jobs 2 of 100 processors in use by local jobs (2.0%)

1 of 25 nodes active (4.00%)

eligible jobs------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs--------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.7 user1 Idle 1 99:23:59:56 Fri Jul 22

Moab.8 user1 Idle 1 99:23:59:56 Fri Jul 22

-N NAME

 The -N switch allows you to give a name to a job
when submitting

 Can use the name with commands such as
checkjob:

$ msub -N myjob cmd.sh

$ checkjob myjob

job Moab.11

AName: myjob

State: Running

...

-o Output Path

 Defines the path and name to be used for the
standard output stream of a batch job

 The named file ends up on the compute node’s
file system

 The output file is relative to the where the job
script is being run on the compute node

-o Output Path

 Example pingtest.sh:

 Submit the job:

 View the output:

#!/bin/bash

#PBS -l nodes=TFE1,walltime=300 -o TFE1/stdout.txt

ping -c 3 localhost

$ msub pingtest.sh

$ cat /home/user1/TFE1/stdout.txt

PING TFE1 (127.0.0.1) 56(84) bytes of data.

64 bytes from TFE1 (127.0.0.1): icmp_seq=1 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=2 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=3 ttl-=64 time=1ms

--- mgmtnode ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1s

-e Error Path

 Similar to the output path, the -e can define the
standard error stream of a batch job

 The named file ends up on the compute node’s
file system

 The output file is relative to the where the job
script is being run on the compute node

-m Mail Options

 The -m switch sends email to a predetermined
user upon certain conditions:
abort

begin

end

 To send notification of all events:

$ msub -m abe cmd.sh

-M Mail List

 This switch overrides the default mailto setting
of for email notifications

$ msub -M fred@r1i0n0,barney@r1i0n1,wilma@r1i0n2

-E Environment Variables

 The -E msub switch only works with SLURM
and TORQUE/PBS resources managers

 When jobs run on compute resources, they
behave according to the defined environmental
shell of that compute node

 Environment variables can be sent with job
submission:

MOAB_ACCOUNT MOAB_BATCH MAOB_CLASS
MOAB_DEPEND MOAB_GROUP MOAB_JOBID
MOAB_JOBNAME MOAB_MACHINE MOAB_NODECOUNT
MOAB_NODELIST MOAB_PARTITION MOAB_PROCCOUNT
MOAB_QOS MOAB_TASKMAP MOAB_USER

-E Environment Variables

 Edit pingtest.sh:

 Submit the job:

 View the output:

#!/bin/bash

#PBS -l nodes=TFE1,walltime=300 -E

echo $MOAB_USER

ping -c 3 localhost

$ msub pingtest.sh

$ cat /home/user1/STDIN.o1

user1

PING TFE1 (127.0.0.1) 56(84) bytes of data.

64 bytes from TFE1 (127.0.0.1): icmp_seq=1 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=2 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=3 ttl-=64 time=1ms

--- mgmtnode ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1s

-V All Variables

 The -V switch declares that all environment
variables in the msub environment be exported
to the batch job

 Once declared, they can be used with the env
command

-v Variable List

 The -v switch allows the user to define one or
more variables to be exported into the job
environment

 Does not export all environment variables like
the -V switch

-h Hold

 The -h switch allows the user to submit a job
to Moab and immediately place the job on hold

 Allows users to “Stack” jobs in the job queue
until their data are ready to submit

$ msub -h -l walltime=30:00 cmd1.sh

Moab.1

$ msub -h -l walltime=30:00 cmd2.sh

Moab.2

$ msub -h -l walltime=30:00 cmd3.sh

Moab.3

-h Hold

 Show the hold:

 Un-hold (release) by using mjobctl -u:
$ mjobctl -u Moab.1

$ mjobctl -u Moab.2

$ mjobctl -u Moab.3

$ showq

...

blocked jobs-----------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1 student UserHold 1 00:30:00 Mon Dec 12 12:24:00

Moab.2 student UserHold 1 00:30:00 Mon Dec 12 12:24:30

Moab.3 student UserHold 1 00:30:00 Mon Dec 12 12:24:45

Job Dependencies

 A job’s completion or failure can be used to step
through job workflow

 Job dependencies are active by default

 Dependent jobs are only supported through a
resource manager

 Syntax is specific to the resource manager

Job Dependencies

 Job Submission Example:
$ msub myjob1.sh

Moab.1

$ msub -W x=depend:afterok:Moab.1 myjob2.sh

Moab.2

$ checkjob Moab.2

...

NOTE: job cannot run (dependency Moab.1

jobsuccessfulcomplete not met)

Job Dependency Syntax
Dependency Format Description

after after:<job>[:<job>]... Job may start at any time after specified
jobs have started execution.

afterany afterany:<job>[:<job>]... Job may start at any time after all specified
jobs have completed regardless of
completion status.

afterok afterok:<job>[:<job>]... Job may be start at any time after all
specified jobs have successfully completed.

afternotok afternotok:<job>[:<job>]... Job may start at any time after all specified
jobs have completed unsuccessfully.

Job Dependency Syntax
Dependency Format Description

before before:<job>[:<job>]... Job may start at any time before specified
jobs have started execution.

beforeany beforeany:<job>[:<job>]... Job may start at any time before all
specified jobs have completed regardless
of completion status.

beforeok beforeok:<job>[:<job>]... Job may start at any time before all
specified jobs have successfully
completed.

beforenotok beforenotok:<job>[:<job>]... Job may start at any time before any
specified jobs have completed
unsuccessfully.

on on:<count> Job may start after <count> dependencies
on other jobs have been satisfied.

Job Dependencies

 Moab Cluster Manager View:

Job Monitoring

 checkjob

 showhist

 shoq

 showbf

 showstart

checkjob

 Displays detailed job state information

 Used to view diagnostic output for a specific job

 Individual users can run checkjob on their
own jobs

 Using the -v switch get verbose output

 Using the -v -v switch get very verbose
output

showhist

 showhist is an executable perl script that
queries the history of jobs submitted in the past

 Run by itself, will show all jobs submitted

 Run against a specific job ID, shows information
about that specific job

showq

 Shows information about active, eligible,
blocked, and/or recently completed jobs

 Shows the actual job ordering of the Moab
scheduler

 Can be used to see if the scheduler is running,
stopped, or paused

 Can be run by any user

 --loglevel=0-9 shows more details

showq

 Sample output:

$ showq

active jobs--------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.5 student Running 1 99:23:59:56 Fri Jul 22

Moab.6 student Running 1 99:23:59:56 Fri Jul 22

2 active jobs 2 of 100 processors in use by local jobs (2.0%)

 1 of 25 nodes active (4.00%)

showbf

 Shows how many processors are immediately
available for use on the cluster

 Can be run by any user

$ showbf

Partition Tasks Nodes Duration StartOffset StartDate

--------- ----- ----- -------- ----------- ---------

ALL 20 5 INFINITY 00:00:00 07:00:48_07/27

torque 4 1 INFINITY 00:00:00 07:00:48_07/27

nativerm 16 4 INFINITY 00:00:00 07:00:48_07/27

showstart

 Displays the estimated start time of a job based
on a number of analysis types:

Historical usage

Earliest available reserveable resources

Priority based backlog analysis

 If a job is running, showstart displays the
time the job started

 If a job has a reservation, showstart displays
the start time of the reservation

 Can be run by any user

showstart

 Example output:
$ echo sleep 300 | msub -l nodes=16,walltime=300

Moab.10

$ showstart -e all Moab.10

job Moab.10 requires 16 procs for 00:05:00

Estimated Rsv based start in 00:04:09 on Wed Jul 27 07:25

Estimated Rsv based completion in 00:04:09 on Wed Jul 27:07:30

Estimated Priority based start in 00:04:09 on Wed Jul 27 07:25

Estimated Priority based completion in 00:04:09 on Wed Jul 27:07:30

Estimated Historical based start in 00:04:09 on Wed Jul 27 07:25

Estimated Historical based completion in 00:04:09 on Wed Jul 27:07:30

Best Partition: nativerm

Job Management

 canceljob

 mjobctl

canceljob

 Once a job has been submitted to the queue, it
can be canceled any time by canceljob

 Users can only cancel their own jobs

 Moab Administrators can cancel any jobs

 Can cancel based on jobID or job name

$ echo sleep 300 | msub -l nodes=16,walltime=300

Moab.11

$ canceljob Moab.11

job 'Moab.11' cancelled

mjobctl

 Controls various aspects of job

 Can be used to:

submit

cancel

execute

checkpoint

Job Scripting

 A job script allows you to send a sequence of
commands all at once

 A job script is a simple text file, and can contain:

Shell script environment (hashpling)

Environment variables

Comments

Job executables

 msub statements begin with #PBS

Job Scripting

#!/bin/bash

This script is called test.sh

Moab environment

#PBS -l nodes=TFE1

#PBS -l walltime=300

#PBS -N pingjob

Shell commands

ping -c 3 localhost

cd /home/user1

touch output

date > output

echo “The JOBID of this job is $PBS_JOBID” >> output

echo “Job submitted by $PBS_O_LOGNAME” >> output

echo “The exit status of this job is $? >> output

echo “Done” >> output

 $ musb test.sh

Demo

Questions

9/16/
2009

Moab Cluster Suite Tutorial

54

